Abstract Well and Better Quasi-Orders

Gregory McKay University of East Anglia 31/01/14

Well Quasi-Orders

• A Quasi-Order (Q, \leq) is a set Q with a binary relation \leq on Q that is transitive and reflexive.

Well Quasi-Orders

- A Quasi-Order (Q, \leq) is a set Q with a binary relation \leq on Q that is transitive and reflexive.
- Q is said to be Well Quasi-Ordered (WQO) if it has no infinite antichains or infinite descending sequences.

Well Quasi-Orders

- A Quasi-Order (Q, \leq) is a set Q with a binary relation \leq on Q that is transitive and reflexive.
- Q is said to be Well Quasi-Ordered (WQO) if it has no infinite antichains or infinite descending sequences.
- We can think of the equivalent definition, that there is no function $f: \mathbb{N} \to Q$ such that x < y implies $f(x) \leq f(y)$.

Fronts

A front \mathcal{F} on $A \subseteq \mathbb{N}$ is a set of finite sequences of natural numbers with the following properties:

- \mathcal{F} contains an initial segment of every infinite increasing sequence of natural numbers in A.
- \mathcal{F} is a \square -antichain.

Fronts

A front \mathcal{F} on $A \subseteq \mathbb{N}$ is a set of finite sequences of natural numbers with the following properties:

- \mathcal{F} contains an initial segment of every infinite increasing sequence of natural numbers in A.
- \mathcal{F} is a \square -antichain.

We can define a ranking on fronts which we call the depth. The front consisting of length 1 sequences will have depth 1.

Structured Fronts

• We define a shift map \cdot^+ on an infinite sequence $X = (x_i)_{i \in \omega}$, to be $X^+ = (x_{i+1})_{i \in \omega}$.

Structured Fronts

- We define a shift map \cdot^+ on an infinite sequence $X = (x_i)_{i \in \omega}$, to be $X^+ = (x_{i+1})_{i \in \omega}$.
- We define the following relation on a front:
 For a, b ∈ F, a ⊲ b iff there is an infinite sequence X such that a ⊏ X and b ⊏ X⁺.

Better Quasi-Orders

• So we have another equivalent definition of WQO: there is no $f : \mathcal{F} \to Q$ for \mathcal{F} a front of depth 1, such that $a \triangleleft b$ implies $f(a) \not\leq f(b)$.

Better Quasi-Orders

- So we have another equivalent definition of WQO: there is no $f : \mathcal{F} \to Q$ for \mathcal{F} a front of depth 1, such that $a \triangleleft b$ implies $f(a) \not\leq f(b)$.
- Q is said to be Better Quasi-Ordered (BQO) iff there is no $f : \mathcal{F} \to Q$ for \mathcal{F} a front, such that $a \triangleleft b$ implies $f(a) \not\leq f(b)$.

Better Quasi-Orders

- So we have another equivalent definition of WQO: there is no $f : \mathcal{F} \to Q$ for \mathcal{F} a front of depth 1, such that $a \triangleleft b$ implies $f(a) \not\leq f(b)$.
- Q is said to be Better Quasi-Ordered (BQO) iff there is no $f: \mathcal{F} \to Q$ for \mathcal{F} a front, such that $a \triangleleft b$ implies $f(a) \not\leq f(b)$.
- Such an f is called bad.

• A Topological Ramsey Space is a triple (\mathcal{R}, \leq, r) where \mathcal{R} is a nonempty set, \leq is a quasi-order on \mathcal{R} and $r : \mathcal{R} \times \omega \to \mathcal{A}\mathcal{R}$.

- A Topological Ramsey Space is a triple (\mathcal{R}, \leq, r) where \mathcal{R} is a nonempty set, \leq is a quasi-order on \mathcal{R} and $r : \mathcal{R} \times \omega \to \mathcal{AR}$.
- Think of \mathcal{R} as infinite sequences and \mathcal{AR} as finite sequences.

- A Topological Ramsey Space is a triple (\mathcal{R}, \leq, r) where \mathcal{R} is a nonempty set, \leq is a quasi-order on \mathcal{R} and $r : \mathcal{R} \times \omega \to \mathcal{AR}$.
- Think of \mathcal{R} as infinite sequences and \mathcal{AR} as finite sequences.
- Eg $(\mathbb{N}^{[\infty]},\subseteq,r)$ is a Ramsey space.

- A Topological Ramsey Space is a triple (\mathcal{R}, \leq, r) where \mathcal{R} is a nonempty set, \leq is a quasi-order on \mathcal{R} and $r : \mathcal{R} \times \omega \to \mathcal{AR}$.
- Think of \mathcal{R} as infinite sequences and \mathcal{AR} as finite sequences.
- Eg $(\mathbb{N}^{[\infty]}, \subseteq, r)$ is a Ramsey space.

- A Topological Ramsey Space is a triple (\mathcal{R}, \leq, r) where \mathcal{R} is a nonempty set, \leq is a quasi-order on \mathcal{R} and $r : \mathcal{R} \times \omega \to \mathcal{AR}$.
- Think of \mathcal{R} as infinite sequences and \mathcal{AR} as finite sequences.
- Eg $(\mathbb{N}^{[\infty]}, \subseteq, r)$ is a Ramsey space.

• Abstract Nash-Williams Theorem: For every front \mathcal{F} on $A \in \mathcal{R}$ and every partition $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_1$, there is a $B \leq A$ such that $\mathcal{F}|B \subseteq \mathcal{F}_0$ or $\mathcal{F}|B \subseteq \mathcal{F}_1$.

• For Ramsey spaces with a valid shift map, define similarly to before:

- For Ramsey spaces with a valid shift map, define similarly to before:
- Q is \mathcal{R} -WQO iff there is no $f : \mathcal{F} \to Q$ for \mathcal{F} a front of depth 1, such that $a \triangleleft b$ implies $f(a) \not\leq f(b)$.

- For Ramsey spaces with a valid shift map, define similarly to before:
- Q is \mathcal{R} -WQO iff there is no $f : \mathcal{F} \to Q$ for \mathcal{F} a front of depth 1, such that $a \triangleleft b$ implies $f(a) \not\leq f(b)$.
- Q is \mathcal{R} -BQO iff there is no $f : \mathcal{F} \to Q$ for \mathcal{F} a front, such that $a \triangleleft b$ implies $f(a) \not\leq f(b)$.

- For Ramsey spaces with a valid shift map, define similarly to before:
- Q is \mathcal{R} -WQO iff there is no $f : \mathcal{F} \to Q$ for \mathcal{F} a front of depth 1, such that $a \triangleleft b$ implies $f(a) \not\leq f(b)$.
- Q is \mathcal{R} -BQO iff there is no $f : \mathcal{F} \to Q$ for \mathcal{F} a front, such that $a \triangleleft b$ implies $f(a) \not\leq f(b)$.
- Here the fronts are from $\mathcal R$ instead of $\mathbb N^{[\infty]}$.

Theorem:

For any topological Ramsey space \mathcal{R} that has a countable front, and any quasi-order Q, "Q is \mathcal{R} -WQO" is equivalent to one of the following:

- $\bullet~Q$ is any quasi-order,
- $\bullet~Q$ has no infinite antichains,
- $\bullet \ Q$ has no infinite antichains and no infinite descending sequences.

 (\mathcal{R}) -WQO and (\mathcal{R}) -BQO

• For $a, b \in \mathcal{F}$ say $a \triangledown b$ if $r_1(a) \neq r_1(b)$ and $r_1(a) \not \lhd r_1(b) \not \lhd r_1(a)$.

 (\mathcal{R}) -WQO and (\mathcal{R}) -BQO

- For $a, b \in \mathcal{F}$ say $a \nabla b$ if $r_1(a) \neq r_1(b)$ and $r_1(a) \not \lhd r_1(b) \not \lhd r_1(a)$.
- We now consider structures of form (Q,\leq,\sim) where \sim is a symmetric relation on Q.

 (\mathcal{R}) -WQO and (\mathcal{R}) -BQO

- For $a, b \in \mathcal{F}$ say $a \nabla b$ if $r_1(a) \neq r_1(b)$ and $r_1(a) \not \lhd r_1(b) \not \lhd r_1(a)$.
- We now consider structures of form (Q, \leq, \sim) where \sim is a symmetric relation on Q. Note that \sim is usually not an equivalence relation!

 (\mathcal{R}) -WQO and (\mathcal{R}) -BQO

- For $a, b \in \mathcal{F}$ say $a \bigtriangledown b$ if $r_1(a) \neq r_1(b)$ and $r_1(a) \not \lhd r_1(b) \not \lhd r_1(a)$.
- We now consider structures of form (Q, ≤, ~) where ~ is a symmetric relation on Q.
 Note that ~ is usually not an equivalence relation!
- Q is (\mathcal{R}) -BQO iff there is no $f: \mathcal{F} \to Q$ for \mathcal{F} a front, such that $a \triangleleft b$ implies $f(a) \not\leq f(b)$, and $s \lor t$ implies $f(s) \sim f(t)$.

- For $a, b \in \mathcal{F}$ say $a \triangledown b$ if $r_1(a) \neq r_1(b)$ and $r_1(a) \not \lhd r_1(b) \not \lhd r_1(a)$.
- We now consider structures of form (Q, \leq, \sim) where \sim is a symmetric relation on Q. Note that \sim is usually not an equivalence relation!
- Q is (\mathcal{R}) -BQO iff there is no $f: \mathcal{F} \to Q$ for \mathcal{F} a front, such that $a \triangleleft b$ implies $f(a) \not\leq f(b)$, and $s \lor t$ implies $f(s) \sim f(t)$.

• Q is (\mathcal{R}) -WQO iff there is no such f from a front of depth 1.

 (\mathcal{R}) -WQO and (\mathcal{R}) -BQO

For a special type of \mathcal{R} and by choosing a sufficiently strong \sim , useful techniques from BQO theory still work.

For a special type of \mathcal{R} and by choosing a sufficiently strong \sim , useful techniques from BQO theory still work.

- Minimal bad Q-array lemma.
- Q is (\mathcal{R}) -BQO implies \tilde{Q} is (\mathcal{R}) -BQO.
- Bad functions from "Borel measurable bad functions" (Simpson's definition).

$$(\mathbb{N}^{[\infty]})\text{-}\mathbb{W}\mathbb{Q}\mathbb{O} \to (W_{L_v}^{[\infty]})\text{-}\mathbb{W}\mathbb{Q}\mathbb{O} \to (\mathsf{FIN}_1^{[\infty]})\text{-}\mathbb{W}\mathbb{Q}\mathbb{O} \leftrightarrow (\mathsf{FIN}_k^{[\infty]})\text{-}\mathbb{W}\mathbb{Q}\mathbb{O}$$

Let \mathbb{T} be the set of non-persistent trees of size \aleph_1 , with no uncountable branches.

Let \mathbb{T} be the set of non-persistent trees of size \aleph_1 , with no uncountable branches.

For $S, T \in \mathbb{T}$ define $S \leq T$ iff there is an $f : S \to T$ such that $a <_S b \longrightarrow f(a) <_T f(b)$.

Let \mathbb{T} be the set of non-persistent trees of size \aleph_1 , with no uncountable branches.

For $S, T \in \mathbb{T}$ define $S \leq T$ iff there is an $f : S \to T$ such that $a <_S b \longrightarrow f(a) <_T f(b)$.

Todorčević and Väänänen proved that this order has antichains of size 2^{\aleph_1} .

Theorem:

 (\mathbb{T},\leq,\sim) is $(W_{L_v}^{[\infty]}) ext{-}\mathsf{BQO}.$

References

S. Todorčević, Introduction to Ramsey Spaces. Princeton University Press (2010).

S. Todorčević and J. Väänänen, Trees and Ehrenfeucht-Fraïssé games. Ann. Pure Appl. Logic 100(1-3) (1999), 69-97.

S. G. Simpson, BQO theory and Fraïssé's conjecture. Chapter 9 of Recursive aspects of descriptive set theory, Oxford Univ. Press, New York, (1985), pp. 124-138.

C. St. J.A. Nash-Williams, On well-quasi-ordering infinite trees. Proc. Phil. Soc. 61, (1965), 697-720.