Abstract Well and Better Quasi-Orders

Gregory McKay
University of East Anglia
31/01/14

Well Quasi-Orders

- A Quasi-Order (Q, \leq) is a set Q with a binary relation \leq on Q that is transitive and reflexive.

Well Quasi-Orders

- A Quasi-Order (Q, \leq) is a set Q with a binary relation \leq on Q that is transitive and reflexive.
- Q is said to be Well Quasi-Ordered (WQO) if it has no infinite antichains or infinite descending sequences.

Well Quasi-Orders

- A Quasi-Order (Q, \leq) is a set Q with a binary relation \leq on Q that is transitive and reflexive.
- Q is said to be Well Quasi-Ordered (WQO) if it has no infinite antichains or infinite descending sequences.
- We can think of the equivalent definition, that there is no function $f: \mathbb{N} \rightarrow Q$ such that $x<y$ implies $f(x) \not 又 f(y)$.

Fronts

A front \mathcal{F} on $A \subseteq \mathbb{N}$ is a set of finite sequences of natural numbers with the following properties:

- \mathcal{F} contains an initial segment of every infinite increasing sequence of natural numbers in A.
- \mathcal{F} is a \sqsubset-antichain.

Fronts

A front \mathcal{F} on $A \subseteq \mathbb{N}$ is a set of finite sequences of natural numbers with the following properties:

- \mathcal{F} contains an initial segment of every infinite increasing sequence of natural numbers in A.
- \mathcal{F} is a \sqsubset-antichain.

We can define a ranking on fronts which we call the depth. The front consisting of length 1 sequences will have depth 1 .

Structured Fronts

- We define a shift map . + on an infinite sequence $X=\left(x_{i}\right)_{i \in \omega}$, to be $X^{+}=\left(x_{i+1}\right)_{i \in \omega}$.

Structured Fronts

- We define a shift map . ${ }^{+}$on an infinite sequence $X=\left(x_{i}\right)_{i \in \omega}$, to be $X^{+}=\left(x_{i+1}\right)_{i \in \omega}$.
- We define the following relation on a front:

For $a, b \in \mathcal{F}, a \triangleleft b$ iff there is an infinite sequence X such that $a \sqsubset X$ and $b \sqsubset X^{+}$.

Better Quasii-Orders

- So we have another equivalent definition of WQO: there is no $f: \mathcal{F} \rightarrow Q$ for \mathcal{F} a front of depth 1 , such that $a \triangleleft b$ implies $f(a) \not 又 f(b)$.

Better Quasii-Orders

- So we have another equivalent definition of WQO: there is no $f: \mathcal{F} \rightarrow Q$ for \mathcal{F} a front of depth 1 , such that $a \triangleleft b$ implies $f(a) \not \leq f(b)$.
- Q is said to be Better Quasi-Ordered (BQO) iff there is no $f: \mathcal{F} \rightarrow Q$ for \mathcal{F} a front, such that $a \triangleleft b$ implies $f(a) \notin f(b)$.

Better Quasī-Orders

- So we have another equivalent definition of WQO: there is no $f: \mathcal{F} \rightarrow Q$ for \mathcal{F} a front of depth 1 , such that $a \triangleleft b$ implies $f(a) \not \leq f(b)$.
- Q is said to be Better Quasi-Ordered (BQO) iff there is no $f: \mathcal{F} \rightarrow Q$ for \mathcal{F} a front, such that $a \triangleleft b$ implies $f(a) \not \subset f(b)$.
- Such an f is called bad.

Ramsey Spaces

- A Topological Ramsey Space is a triple (\mathcal{R}, \leq, r) where \mathcal{R} is a nonempty set, \leq is a quasi-order on \mathcal{R} and $r: \mathcal{R} \times \omega \rightarrow \mathcal{A} \mathcal{R}$.

Ramsey Spaces

- A Topological Ramsey Space is a triple (\mathcal{R}, \leq, r) where \mathcal{R} is a nonempty set, \leq is a quasi-order on \mathcal{R} and $r: \mathcal{R} \times \omega \rightarrow \mathcal{A} \mathcal{R}$.
- Think of \mathcal{R} as infinite sequences and $\mathcal{A R}$ as finite sequences.

Ramsey Spaces

- A Topological Ramsey Space is a triple (\mathcal{R}, \leq, r) where \mathcal{R} is a nonempty set, \leq is a quasi-order on \mathcal{R} and $r: \mathcal{R} \times \omega \rightarrow \mathcal{A} \mathcal{R}$.
- Think of \mathcal{R} as infinite sequences and $\mathcal{A R}$ as finite sequences.
- $\mathrm{Eg}\left(\mathbb{N}^{[\infty]}, \subseteq, r\right)$ is a Ramsey space.

Ramsey Spaces

- A Topological Ramsey Space is a triple (\mathcal{R}, \leq, r) where \mathcal{R} is a nonempty set, \leq is a quasi-order on \mathcal{R} and $r: \mathcal{R} \times \omega \rightarrow \mathcal{A} \mathcal{R}$.
- Think of \mathcal{R} as infinite sequences and $\mathcal{A R}$ as finite sequences.
- $\mathrm{Eg}\left(\mathbb{N}^{[\infty]}, \subseteq, r\right)$ is a Ramsey space.

$$
\bullet \triangleleft \bullet \triangleleft \bullet \triangleleft \bullet \triangleleft \bullet \triangleleft \bullet \triangleleft \ldots
$$

Ramsey Spaces

- A Topological Ramsey Space is a triple (\mathcal{R}, \leq, r) where \mathcal{R} is a nonempty set, \leq is a quasi-order on \mathcal{R} and $r: \mathcal{R} \times \omega \rightarrow \mathcal{A} \mathcal{R}$.
- Think of \mathcal{R} as infinite sequences and $\mathcal{A R}$ as finite sequences.
- $\mathrm{Eg}\left(\mathbb{N}^{[\infty]}, \subseteq, r\right)$ is a Ramsey space.

- Abstract Nash-Williams Theorem:

For every front \mathcal{F} on $A \in \mathcal{R}$ and every partition $\mathcal{F}=\mathcal{F}_{0} \cup \mathcal{F}_{1}$, there is a $B \leq A$ such that $\mathcal{F} \mid B \subseteq \mathcal{F}_{0}$ or $\mathcal{F} \mid B \subseteq \mathcal{F}_{1}$.

$\mathcal{R}-W Q O$ and $\mathcal{R}-B Q O$

- For Ramsey spaces with a valid shift map, define similarly to before:

$\mathcal{R}-W Q O$ and $\mathcal{R}-B Q O$

- For Ramsey spaces with a valid shift map, define similarly to before:
- Q is \mathcal{R}-WQO iff there is no $f: \mathcal{F} \rightarrow Q$ for \mathcal{F} a front of depth 1 , such that $a \triangleleft b$ implies $f(a) \not \leq f(b)$.

$\mathcal{R}-W Q O$ and $\mathcal{R}-B Q O$

- For Ramsey spaces with a valid shift map, define similarly to before:
- Q is \mathcal{R}-WQO iff there is no $f: \mathcal{F} \rightarrow Q$ for \mathcal{F} a front of depth 1 , such that $a \triangleleft b$ implies $f(a) \not 又 f(b)$.
- Q is \mathcal{R}-BQO iff there is no $f: \mathcal{F} \rightarrow Q$ for \mathcal{F} a front, such that $a \triangleleft b$ implies $f(a) \not \leq f(b)$.

$\mathcal{R}-\mathrm{WQO}$ and $\mathcal{R}-\mathrm{BQO}$

- For Ramsey spaces with a valid shift map, define similarly to before:
- Q is \mathcal{R}-WQO iff there is no $f: \mathcal{F} \rightarrow Q$ for \mathcal{F} a front of depth 1 , such that $a \triangleleft b$ implies $f(a) \not 又 f(b)$.
- Q is \mathcal{R}-BQO iff there is no $f: \mathcal{F} \rightarrow Q$ for \mathcal{F} a front, such that $a \triangleleft b$ implies $f(a) \not \leq f(b)$.
- Here the fronts are from \mathcal{R} instead of $\mathbb{N}^{[\infty]}$.

$\mathcal{R}-W Q O$ and $\mathcal{R}-B Q O$

Theorem:

For any topological Ramsey space \mathcal{R} that has a countable front, and any quasi-order Q, " Q is $\mathcal{R}-\mathrm{WQO}$ " is equivalent to one of the following:

- Q is any quasi-order,
- Q has no infinite antichains,
- Q has no infinite antichains and no infinite descending sequences.
$W_{L_{v}}^{[\infty]}$
$\bullet \triangleleft \bullet \triangleleft \cdots$

$\mathrm{FIN}_{1}^{[\infty]}$

(\mathcal{R})-WQO and ($\mathcal{R})-\mathrm{BQO}$

- For $a, b \in \mathcal{F}$ say $a \nabla b$ if $r_{1}(a) \neq r_{1}(b)$ and $r_{1}(a) \nless r_{1}(b) \nless r_{1}(a)$.

(\mathcal{R})-WQO and ($\mathcal{R})-$-BQO

- For $a, b \in \mathcal{F}$ say $a \nabla b$ if $r_{1}(a) \neq r_{1}(b)$ and $r_{1}(a) \nless r_{1}(b) \nless r_{1}(a)$.
- We now consider structures of form (Q, \leq, \sim) where \sim is a symmetric relation on Q.

(\mathcal{R})-WQO and ($\mathcal{R})-\mathrm{BQO}$

- For $a, b \in \mathcal{F}$ say $a \nabla b$ if $r_{1}(a) \neq r_{1}(b)$ and $r_{1}(a) \nless r_{1}(b) \nless r_{1}(a)$.
- We now consider structures of form (Q, \leq, \sim) where \sim is a symmetric relation on Q.
Note that \sim is usually not an equivalence relation!

(\mathcal{R})-WQO and ($\mathcal{R})-$-BQO

- For $a, b \in \mathcal{F}$ say $a \nabla b$ if $r_{1}(a) \neq r_{1}(b)$ and $r_{1}(a) \nless r_{1}(b) \nless r_{1}(a)$.
- We now consider structures of form (Q, \leq, \sim) where \sim is a symmetric relation on Q.
Note that \sim is usually not an equivalence relation!
- Q is (\mathcal{R})-BQO iff there is no $f: \mathcal{F} \rightarrow Q$ for \mathcal{F} a front, such that $a \triangleleft b$ implies $f(a) \not 又 f(b)$, and $s \nabla t$ implies $f(s) \sim f(t)$.

(\mathcal{R})-WQO and ($\mathcal{R})-$-BQO

- For $a, b \in \mathcal{F}$ say $a \nabla b$ if $r_{1}(a) \neq r_{1}(b)$ and $r_{1}(a) \nless r_{1}(b) \nless r_{1}(a)$.
- We now consider structures of form (Q, \leq, \sim) where \sim is a symmetric relation on Q.
Note that \sim is usually not an equivalence relation!
- Q is (\mathcal{R})-BQO iff there is no $f: \mathcal{F} \rightarrow Q$ for \mathcal{F} a front, such that $a \triangleleft b$ implies $f(a) \not 又 f(b)$, and $s \nabla t$ implies $f(s) \sim f(t)$.
- Q is ($\mathcal{R})-W Q O$ iff there is no such f from a front of depth 1 .

(\mathcal{R})-WQO and (\mathcal{R})-BQO

For a special type of \mathcal{R} and by choosing a sufficiently strong \sim, useful techniques from BQO theory still work.

(\mathcal{R})-WQO and (\mathcal{R})-BQO

For a special type of \mathcal{R} and by choosing a sufficiently strong \sim, useful techniques from BQO theory still work.

- Minimal bad Q-array lemma.
- Q is (\mathcal{R})-BQO implies \tilde{Q} is (\mathcal{R})-BQO.
- Bad functions from "Borel measurable bad functions" (Simpson's definition).
$\left(\mathbb{N}^{[\infty]}\right)-\mathrm{WQO} \rightarrow\left(W_{L_{v}}^{[\infty]}\right)-\mathrm{WQO} \rightarrow\left(\mathrm{FIN}_{1}^{[\infty]}\right)-\mathrm{WQO} \leftrightarrow\left(\mathrm{FIN}_{k}^{[\infty]}\right)-\mathrm{WQO}$
(and

Non-Persistent Trees

Let \mathbb{T} be the set of non-persistent trees of size \aleph_{1}, with no uncountable branches.

Non-Persistent Trees

Let \mathbb{T} be the set of non-persistent trees of size \aleph_{1}, with no uncountable branches.

For $S, T \in \mathbb{T}$ define $S \leq T$ iff there is an $f: S \rightarrow T$ such that $a<_{S} b \longrightarrow f(a)<_{T} f(b)$.

Non-Persistent Trees

Let \mathbb{T} be the set of non-persistent trees of size \aleph_{1}, with no uncountable branches.

For $S, T \in \mathbb{T}$ define $S \leq T$ iff there is an $f: S \rightarrow T$ such that $a<_{S} b \longrightarrow f(a)<_{T} f(b)$.
Todorc̄ević and Väänänen proved that this order has antichains of size $2^{\aleph_{1}}$.

Non-Persistent Trees

Theorem:

$$
(\mathbb{T}, \leq, \sim) \text { is }\left(W_{L_{v}}^{[\infty]}\right) \text { - } \mathrm{BQO}
$$

References

S. Todorc̄ević, Introduction to Ramsey Spaces. Princeton University Press (2010).
S. Todorc̄ević and J. Väänänen, Trees and Ehrenfeucht-Fraïssé games. Ann. Pure Appl. Logic 100(1-3) (1999), 69-97.
S. G. Simpson, BQO theory and Fraïssé's conjecture. Chapter 9 of Recursive aspects of descriptive set theory, Oxford Univ. Press, New York, (1985), pp. 124-138.
C. St. J.A. Nash-Williams, On well-quasi-ordering infinite trees.

Proc. Phil. Soc. 61, (1965), 697-720.

